
Fast GPU Based k-NN Algorithm

Ishbir Singh

Computer Science Extended Essay

Candidate Number: 001424-0121
Examination Session: May 2014

School: Pathways World School, Aravali
Supervisor: Ms. Usha Kasana

Word Count: 3967

Abstract

k-nearest neighbour or k-NN is a classical computer science problem in the field of machine
learning and pattern recognition with a polynomial time complexity. GPGPU or General Pur-
pose computing on Graphics Processing Units is an upcoming technology that allows massive
parallelization because of the presence of hundreds of independant cores. This extended essay
explores existing work in this nascent field of artificial intelligence algorithms on graphics card
and discusses an algorithm for massively parallelizing k nearest neighbour calculations using
CUDA (a technology for GPU computing by NVIDIA) so that data sets with a large number of
data points, test points and dimensions (limited by GPU memory) can be efficiently processed.
Thus the research question for this extended essay is: how can k nearest neighbours algorithm
be optimized to run faster using CUDA GPGPU technology?

The researcher reviewed and analyzed past work in the same field to come up with a simple
but efficient algorithm which gave a maximum 74.5x performance increase with a mid-range
graphics card (NVIDIA GT 650M) over a serial CPU version of the same algorithm. Testing
on two different systems showed that although the algorithm proposed is brute-force, it has
tremendous capacity for being parallelized because it was found that with an increase in the
number of test and training points, the GPU version was even faster.

In spite of such an increase in performance, it was found that the proposed solution had its
limitations, such as excessive consumption of memory. The algorithm could still be optimized
further using yet unknown techniques or better mathematical insight to further boost speed and
bring down the memory consumption so that even more number of test points, training points
and dimensions can be processed using the same amount of memory.

Word Count: 289

Table of Contents
1 Introduction 1

2 Background 1

3 Previous Work 2
3.1 Distance Computation . 2
3.2 Sorting . 3
3.3 Selection . 5
3.4 Classification . 6

4 Proposed Algorithm 6
4.1 Distance Calculation . 6
4.2 Selection/Sorting Algorithm . 8
4.3 Classification . 8

5 Performance and Evaluation 8

6 Conclusion 10

References 11

A Raw Time Measurements 13
A.1 Test System 1 . 13

A.1.1 Case 1 . 13
A.1.2 Case 2 . 14
A.1.3 Case 3 . 14
A.1.4 Case 4 . 15
A.1.5 Case 5 . 15
A.1.6 Case 6 . 16
A.1.7 Case 7 . 16
A.1.8 Case 8 . 17
A.1.9 Case 9 . 17

A.2 Test System 2 . 18
A.2.1 Case 1 . 18
A.2.2 Case 2 . 18
A.2.3 Case 3 . 19
A.2.4 Case 4 . 19
A.2.5 Case 5 . 20
A.2.6 Case 6 . 20

A.2.7 Case 7 . 21
A.2.8 Case 8 . 21
A.2.9 Case 9 . 22

B Reproduced Code 23
B.1 dataGenerator.py . 23
B.2 Definitions.cuh . 24
B.3 CUDA-KNN.cu . 24

Ishbir Singh
001424-0121

1 Introduction
Research on this topic began with Dr. Suely Oliveira at the University of Iowa, USA1. However,
since the results were a little inconclusive and the need for improvement in technique and more
optimization was felt, the same research was continued and is now presented in the form of an
extended essay.

The k-nearest neighbour or k-NN problem is a method for classifying unknown objects
based on the closest training samples in feature space. It is a type of supervised learning and
is among the simplest of all machine-learning algorithms (Peterson 2009). The objects are as-
sumed to be vectors of numbers xi, where i = 1, 2, . . . , n in n-dimensional space. Each number
xi is a feature of the data object. Euclidean distances between a test sample and specified train-
ing samples are commonly used distances (Peterson 2009); however, they can be generalized
to be a Minkowski metric of the form:

p

√√√√ n∑
i=1

(|xi − yi|)p

where p is a real number (1 for Manhattan or 2 for Euclidean distances) and n refers to the
number of features or dimensions of the point (Andoni 2009; Nene and Nayar 1997).

k-NN has various applications in the fields of data processing and analysis. Some other
applications include information retrieval, searching image databases (Andoni 2009), medical
analysis involving detection of QRS complexes in ECG (electrocardiogram) (Saini, Singh, and
Khosla 2013) and pattern recognition of antibody results (Binder et al. 2005).

In the past decade, GPUs have become commonplace and GPGPU technologies such as
OpenCL and CUDA facilitate their use for not just graphics processing but also general pur-
pose computing. They have hundreds of cores that can process data simultaneously with high
precision and performance that exceed that of the CPUs. The specialized nature of GPUs makes
it easier to use additional transistors for computation. Moreover, the multi-billion dollar game
market, which brings more graphic intensive games every year, is a key factor driving the in-
novation behind each generation of GPUs (Harris 2004).

Thus the research question for this extended essay is: how can k nearest neighbours algo-
rithm be optimized to run faster using CUDA GPGPU technology?

2 Background
GPGPU technology is being used for a variety of purposes such as advanced rendering, com-
putational geometry, computer vision and scientific computing. However, algorithms designed

1Abstract of the previous research can be found on page 22 of http://www2.education.uiowa.edu/
belinblank/students/summer/pdf/sstp_abstracts.pdf

1

http://www2.education.uiowa.edu/belinblank/students/summer/pdf/sstp_abstracts.pdf
http://www2.education.uiowa.edu/belinblank/students/summer/pdf/sstp_abstracts.pdf

Ishbir Singh
001424-0121

for CPUs cannot be simply ‘ported’ over to GPUs because of the complexity of the GPU pro-
gramming model. CUDA is a parallel computing architecture developed by NVIDIA for their
graphic cards. The strength of CUDA lies in the fact that it is massively scalable to use all the
available resources of the GPUs, provided that the code is written keeping in mind the architec-
ture of a GPU.

In CUDA architecture, the device is the GPU that has many multi-processors each con-
taining multiple stream processors capable of processing one thread at a time. All the multi-
processors share the device-widememory known as global memory. Each global memory trans-
action is of 128 bytes so if consecutive threads access consecutive chunks of global memory, the
reads/writes are clubbed into one. This is known as coalescing. Also shared with all the multi-
processors is the read-only constant memory. All the stream processors in a multi-processor
share the memory known as shared memory, which is typically in the range of 16 KB - 48
KB. Each stream processor has its own memory known as the register memory. Each multi-
processor processes a number of threads and these threads are collectively known as a thread
block (CUDA C Programming Guide 2013).

3 Previous Work

3.1 Distance Computation
The first stage of solving the k-nearest neighbours problem is calculating the distance between
the test points and the query point. High dimensional input data is common for many real-world
problems and brute-force k-NN, due to its high running complexity ofO(mnd), wherem is the
number of test points, n is the number of training points and d is the number of dimensions of
data, is impractical for running on a CPU. Various techniques have been proposed by researchers
to bring down its polynomial time complexity.

Nene and Nayar (1997) proposed a simple algorithm for nearest neighbour search in high
dimensions. Their algorithm, however, did not exactly look for k-nearest neighbours but neigh-
bours within a specified distance e. The complexity of their algorithm isO(ne+n

(
1−ed

1−e

)
) and

for small e, it grows very slowly with d. It relies on dynamic space partitioning by searching
for the points in a hypercube of side 2e centered at a query point Q. The closest point is then
found by exhaustive search on these candidate points, the cost of which is negligible since the
number of query points is typically small. The disadvantage of this approach, however, is that
it does not solve the k-nearest neighbour problem but tackles a different, albeit similar problem.
Another issue is that an appropriate value of e is hard to determine because the distribution of
data may not be known beforehand.

Arya et al. (1998) presented an algorithm for approximate nearest neighbour search which
brought the complexity down to O(dn logn) for pre-processing, O(cd,ε logn) for computing
the approximate nearest neighbour of a query point q (where ε > 0 and cd,ε ≤ d[1 + 6d/ε]d)

2

Ishbir Singh
001424-0121

and O(kd logn) for computing the approximate k-nearest neighbours. The algorithm relied on
hierarchical de-composition of space called a balanced box-decomposition (BDD) tree. The
tree was divided such that each small hyper-rectangle (cell) had one associated point. The
algorithm locates the test point in the BDD tree in O(logn) time and enumerates over the cells
nearest to it in the increasing order of distance from the test point. As soon as dist(p, q)/(1+ ε)

is greater than the lowest distance seen so far, the loop terminates, reporting the approximate
nearest neighbour. This step is repeated k times to get the k approximate nearest neighbours.
The downsides of this were that the algorithm is inefficient when d > 20 due to an increase in
the average error as well as the running time.

Another way to speed up the computation in spite of having the same time complexity is
by utilizing the parallel power of graphics cards. Kuang and Zhao (2009) proposed a practical
GPU based KNN algorithm implemented in CUDA that used data segmentation to increase per-
formance compared to ordinary CPU brute-force algorithms. They use a segmentation strategy
that splits the matrix containing the results of the calculation into a large number of tiles with
width T . Each thread block containing T × T threads takes charge of a tile in the result matrix.
Each thread in the block processes one element of the result set. Test and train matrices are also
split into tiles and each thread calculates the partial distances of T points using d/T dimensions.
This approach yields the researchers a speed-up of 34.91x from a GPU over a CPU. However,
it is important to note that the CPU was a Pentium D processor (quite old) and the graphics card
9600GT (not as old as Pentium D). Moreover, the data segmentation strategy is complex and
the researcher believes that such complexity is not required.

Garcia, Debreuve, and Barlaud (2008) presented an algorithm for fast k-NN search using
GPUs. Their approach was to process a pair of test and training points on each thread and
calculate the distance between them. They use global memory for the test points (coalesced
data2) and texture memory for the training points (non-coalesced data). However, their data
partitioning and work group assignment techniques are not mentioned in the paper.

3.2 Sorting
Sorting the distance calculations is not required in some of the previously mentioned algorithms
(Nene and Nayar 1997; Arya et al. 1998) because of the way in which they process points.
However, for brute force approach, there exist numerous sorting algorithms.

Radix sort involves doing a stable distribution sort on the digit-places from least significant
tomost significant, partitioning the keys (positional representation) into r distinct buckets where
r = 2b and b is number of bits in a digit.

Bucket sort is a sorting algorithm that works by partitioning an array into a number of buck-
ets. Each bucket is then filled with the elements of the specified range and those elements are
further sorted by using bucket sort recursively or some other sorting algorithm.

2Coalesced data refers to data arranged in memory such that coalescing is possible

3

Ishbir Singh
001424-0121

Insertion sort is a simple sorting algorithm that has an average complexity of O(n2). How-
ever, this complexity is too high if the number of training points is large.

Merge sort is divide-and-conquer sorting algorithmwith an average complexity ofO(n logn).
It works by splitting the array to be sorted recursively such that each resulting array has only 1
element. Then, it goes back up, merging the lists and placing elements in the desired order.

Cederman and Tsigas (2010) proposed a practical quicksort algorithm for GPUs. Quicksort
is an algorithm that works by selecting a random pivot (in randomized quicksort or the first
element in the original algorithm proposed by Hoare 1962) from the array of elements to be
sorted. It then loops through the array and places all the elements smaller than the pivot to
the left of it and the bigger elements to its right. This operation is recursively repeated on
the left and right lists until the entire array is sorted. Quicksort has long been considered to
be one of the fastest sorting algorithms for single processor systems but it has not been an
efficient sorting solution for GPUs. It’s actual time complexity is better than radix sort when
n < 232. Their parallel implementation runs in 3 distinct phases with thread as well as thread-
block synchronization.

Sintorn and Assarsson (2008) developed an algorithm for fast parallel GPU sorting using a
hybrid algorithm which relied on multiple sorting strategies to bring the running time for GPU
sorting down to O(n logn) which was previously unheard of for GPU sorting. The first step
is to partition into L sub-lists using either quicksort or bucket sort. The second step is to run a
merge sort and get the final sorted list.

Merrill andGrimshaw (2011) proposed an algorithm for parallel radix sort. Their implemen-
tation of parallel radix sort uses a composite bitwise-parallel scan resulting in a sorting speed of
up to a billion keys per second. It is now the standard algorithm distributed with Thrust library
bundled with CUDA 4.2 onwards.

Helluy (2011) described a portable implementation of radix sort algorithm on OpenCL de-
signed to run on CPUs as well as GPUs. Its speedup is directly proportional to the number of
elements suggesting that it faces an overhead while reading data from host. The researcher has
also created a C++ library for public use.

Garcia, Debreuve, and Barlaud (2008) used an insertion sort variant that outputs only the
k smallest elements, having considered comb sort. However, the time taken by insertion sort
increased linearly with k and it is faster than comb sort only up to around k = 120. This is one
of the major drawbacks of this approach, since it is not feasible to use their insertion sort variant
when k is huge (1001 or 10001).

Kuang and Zhao (2009) used radix sorting proposed by Satish, Harris, and Garland (2009)
on the GPU for sorting the distances between test and training points, having considered using
GPU based bitonic sort. They write that sorting became the bottleneck in the performance of
the whole application, suggesting that further innovations were needed.

However, sorting leads to wastage of clock cycles since the distances for k-NN need not
be sorted. Even for weighted k-NN, it would be much more efficient to take the k smallest

4

Ishbir Singh
001424-0121

distances and then sort just those.

3.3 Selection
Instead of sorting, selection algorithms could be used to find the kth smallest distance between
the test point and the training points. After that, a simple loop could be run to get all the elements
that have a value of less than that of the kth element.

Various selection algorithms exist, one of the simplest being Find by Hoare (1961). Com-
monly known as quick select, it relies on partitioning the array into lists containing elements
that are less than or equal to the pivot and greater than the pivot. The value of k decides whether
the element lies in former or the latter list. If the element lies in either of the list, the process
is recursively repeated only for the list where the element will be. Quick select has an average
running time of O(n).

Akl (1984) described an optimal algorithm for parallel selection. His algorithm assumes
the existence of n1−x processors operating in parallel where 0 < x < 1 and n is the number
of elements to be sorted. The array is divided into n1−x sub-arrays of nx elements and each
processor finds the median of its associated sub-array. Then, the median of all the medians is
found and used to divide the array into 3 sub-arrays S1, S2 and S3 of elements smaller than,
equal to and larger than the median of medians, respectively. This procedure is recursively
repeated until | S1 | + | S2 | ≥ k. The median of medians is the final answer. The parallel
running time of this algorithm is O(nx).

Bader (2004) presented an improved randomized algorithm for parallel selection on CPU
using MPI (Message Passing Interface) that can be used to achieve multi-core, multi-processor
or evenmulti-machine level parallelization. His algorithmworks by choosing two random split-
ters k1 and k2 that partition into 3 groups G0, G1 and G2 iteratively such that ∀x ∈ G0, x < k1

and ∀x ∈ G1, x ∈ [k1, k2] and ∀x ∈ G2, x > k2. The aim is to have the middle group G1 much
smaller than the other groups with the condition that it contains the required selection index.
Once G1 is small enough, the rest of the calculations are performed sequentially. However, the
downsides of MPI are that there is increased latency with multiple machines and CPUs can only
go so fast. GPUs are much faster than CPU in all of the parallel problems discussed here.

Monroe, Wendelberger, and Michalak (2011) described an algorithm for randomized se-
lection on the GPU that works using iterative probabilistic guess-and-check process on pivots
for a three-way partition. Their basic algorithm is similar to Bader (2004) but they use differ-
ent probabilistic calculations and do GPU specific optimizations so because as k increases, the
timing goes up.

Alabi et al. (2012) presented fast k-selection algorithms for GPUs. They reviewed and
improved upon two k-selection algorithms namely radix select and bucket select. Their imple-
mentation of bucket select has lesser mean running time than randomized select proposed by
Monroe, Wendelberger, and Michalak (2011).

5

Ishbir Singh
001424-0121

However, the problem with existing k selection algorithms is that they can only work on
one huge array at a time instead of numerous smaller arrays.

3.4 Classification
Once the list of sorted elements has been obtained, the classification of the test point is de-
cided on the basis of maximum number of objects/points of a specific category in the k-nearest
neighbours result set. If the need calls for weighted k-NN, the closeness of training point to
the test point influences the classification of the test point. The farther points are given lesser
preference while the nearer points are given higher preference.

This step is not computation intensive since only the mode of the training points needs to
be calculated for getting a classification match.

4 Proposed Algorithm

4.1 Distance Calculation
The brute-force approach to distance calculation was chosen because it is the most parallelizable
on the GPU architecture due to a high number of small, yet independant calculations between
each pair of test and training points which can be handled by each thread. A work-group is
assigned one test point and the threads within that work-group calculate the distances between
that test and all the training points. The data containing information about the test and the
training points is stored in the global memory of the GPU. The CUDAkernel3 code is as follows:

1 __global__ void distances_computation(float* test_g, float* train_g, float
*output, int dims) { // dims is dimensions of data

2 /**
3 * test_g: Array of test points in global memory
4 * train_g: Array of training points in global memory
5 * output: Array of output distance calculations in global memory
6 * dims: Number of dimensions in the incoming data
7 */
8
9 float res = 0; // Stores the final result
10 int global_id_0 = blockIdx.x * blockDim.x + threadIdx.x; // ID of

test point
11 int global_id_1 = blockIdx.y * blockDim.y + threadIdx.y; // ID of

training point
12 int global_size_0 = gridDim.x * blockDim.x; // Number of test

points
13 int global_size_1 = gridDim.y * blockDim.y; // Number of training

points
14
15 extern __shared__ float test[];
16 if (threadIdx.y < dims) { // first 'dims' threads copy each

dimension float to local memory

3A CUDA kernel is a function designed to run on the GPU

6

Ishbir Singh
001424-0121

17 test[threadIdx.y] = test_g[dims*global_id_0 + threadIdx.y];
18 }
19 __syncthreads(); // wait for copy operation
20
21 for (int i=0; i < dims; i++) { // loop over!
22 res += pow((train_g[global_size_1*i+global_id_1] − test[i])

, 2); // find the right train point to use
23 }
24
25 int id = global_id_0*global_size_1 + global_id_1; // ID of test

point*Number of training points + Training point ID
26
27 // Thus, the corresponding distances between one test point and all

training points are stored in a contiguous location
28 // This approach is very useful for segmented sorting.
29
30 output[id] = res;
31 }

The kernel begins with getting the data of the test point being handled by the work group
into the shared memory (lines 15-19). Multiple shared memory accesses to the same data are
broadcast to all the threads in a warp, eliminating any memory conflicts. For global memory
requests to be coalesced, the format of the array containing the training points was:

[x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn]

where x, y, z are 3 training points and n refers to nth dimension of the data. Consecutive threads
would thus access consecutive blocks in memory, bringing down access time and number of
memory requests. The test points are stored in the form of:

[x1, x2, . . . , xn, y1, y2, . . . , yn, . . .]

Each thread copies one float xi from the global memory to the shared memory, where i is the
thread ID and x is the test point assigned to the workgroup (line 17). Thus one of the constraints
is that the number of dimensions (d) has to be less than or equal to the thread per work group
count.

The number of test and training points is only limited by the memory and the upper limit of
workgroups which is 65535 × 65535 in each dimension (x and y). Thus, if each thread block
processes 256 training points, there are 65535 testing points possible and around 256 possible
training points. But if the number of test points is reduced, the number of training points can
be increased. This can be expressed in the form of a ratio:

Number of test points× Number of training points = k

where k is constant. However, it is important to note that this limitation only exists in graphics
cards with Compute capability 2.x or below. On the newer models, the limit of workgroups has

7

Ishbir Singh
001424-0121

been extended to 232 − 1 in x dimension but remains the same in y (CUDA C Programming
Guide 2013).

The storage of the points also happens such that memory coalescing is possible (lines 25-
30). Each consecutive thread stores points in consecutive memory locations. The format of this
array is:

[x1y1, x1y2, x1y3, . . . , x1yn, x2y1, x2y2, . . .]

where xnyn′ refers to Euclidean distance between the nth test point and n′th training point. This
format also makes it easier for the next stage (sorting/selection) to easily happen since distances
from one test point and all training points are stored together, thus preventing random memory
accesses.

4.2 Selection/Sorting Algorithm
Since the sorting phase has often been called a bottleneck in kNN calculations (Kuang and
Zhao 2009), the researcher intended to find a parallel k-selection algorithm which could work
on segmented data (since k-selection needs to be run onmany relatively small arrays) in parallel.
However, such an algorithm either has not been made or is not publicly available. Due to lack of
requisite skills for making such an algorithm, a pre-made segmented sorting algorithm named
Segmented Sort Pairs which forms a part of ModernGPU library by NVIDIA Research (Baxter
2013) was thus used.

This sorting algorithm is a high performance variant of merge sort which operates on non-
uniform random data. It sorts pair-wise by the distance between each test and training point,
preserving the index of the training point after sorting. Although this solves the problem, it
results in double the memory consumption than required (the distances array and the indices
array which are stored separately).

4.3 Classification
For the purposes of this paper, the last stage, which is classification, was not implemented
becuase it involves simple matching against an array of pairs of start and end indices to find
out which category the top training points belong to. Once this is known, finding the mode of
the cateogry will give us the category of the testing point thus completing the k-NN algorithm.
This step by its very nature is not compute intensive at all and can easily be done on the CPU
(Kuang and Zhao 2009).

5 Performance and Evaluation
For testing the speed of the algorithm on theGPU, the timer function available withModernGPU
was used. The chrono header file from C++ standard library was used for measuring times of

8

Ishbir Singh
001424-0121

the functions intended to run on CPUs. The releases were compiled for x64 target architecture
on Release configuration using Visual Studio 2012 with all optimizations for speed. Two test
systems were used. The first system ran on Windows 8 64-bit with 6GB DDR3 RAM, Intel
Core i7 2670QM CPU at 2.20GHz and NVIDIA GT 520MX GPU (1GB DDR3 memory). The
second system ran Windows 7 64-bit and had 8GB DDR3 RAM, Intel Core i7 3720QM CPU
at 2.6GHz and NVIDIA GT 650M GPU (1GB GDDR5 memory). All the tests were repeated
5 times to eliminate any random variations in the times. The dimensional data came from a
psuedorandom number generator random.random from the Python standard library and had a
range of [0, 1]. This data was saved into files using a Python helper script (Appendix B.1) and
then read and processed by the CUDA program (Appendix B.3) .

The Raw Time Measurements appendix contains detailed data on each of the 9 test cases
which were used. Each case used different number of training and test points and varying
dimensions. Maximum speed up of 74.5x was obtained using amid-range graphics card (system
2) and around 43.8x using a low-range graphics card (system 1). It was also observed that as
the size and dimensionality of the data set increased, the speedup factor also increased implying
that a GPU is better at handling more data than the CPU. However, moving from case 8 to 9, a
drop in performance was seen in both the systems. This is probably because of increasing the
number of threads from 256 to 512 implying that the former number of simultaneous threads
gives better performance although it limits the number of dimensions. This is a necessary trade-
off. Moreover, from case 7 to 8, the CPU performance sharply dipped in both systems. The
reason for this could not be found by the researcher and needs more thorough investigation not
central to this paper.

The researcher could not use higher number of test and training points due to memory con-
straints (1GB memory in the tested cards). The main consumer of memory was the large array
containing the distances between each test and training point and another array containing the
corresponding indices of the training points so that a paired sort can be done. Without a paired
sort, the indices of the training points would get lost and it would not be possible to know which
points have the smallest Euclidean distances. Moreover, the researcher had initially tried for
even more test points which technically should have fit into the GPU memory. However, the
sort operation was repeatedly failing. On investigation of the source, it was found that the GPU
sort is not an in-place sort but creates two new temporary arrays for key-value pairs, thus con-
suming twice the memory. But a fast in-place sort on the GPU is out of the question because
each memory transaction is of 128 bytes (CUDA C Programming Guide 2013) and in-place
sorting would result in 32 times slower sorting (each float is of 4 bytes). An alternative tech-
nique which does not need to store the array of indices would allow 2 times more points to be
processed.

Moreover, it is important to note the CPU algorithm is a very crude algorithm which could
definitely be sped up using threads, OpenMP (a parallelization library) or hand-optimization
using assembly language instructions sets like MMX and SSE. But since the comparison was

9

Ishbir Singh
001424-0121

essentially between a single core and a many core system, there was no need for such extreme
optimizations as modern compilers usually optimize code well.

6 Conclusion
This paper explored what the k-nearest neighbours algorithm is and how it can be parallelized
on a GPU so that the massively parallel data processing capabilities of this device can be fully
exploited for artificial intelligence tasks. Sorting did not prove to be a bottleneck as the timing
charts in Appendix A a show. Nevertheless, the increase in sorting time was not linear with the
increase in number of elements to be sorted and the speedup of GPU over CPU was lesser.

The distance algorithm could still be optimized further using yet unknown techniques or
better mathematical insight. This could include finding a way such that no sorting is necessary,
for example the use of n dimensional trees (as done by Arya et al. 1998, but decreasing the error
in higher dimensions). This would also greatly reduce memory consumption since it was found
that sorting is the procedure consuming the maximum memory. However, if such a technique
is difficult to implement on a GPU, the existing algorithm could be modified such that multiple
test and training points could be processed in the same workgroup as done by Kuang and Zhao
(2009). Although this would increase the complexity and might not have any effect on the speed
(merely a speculation), more test and training points could be processed because of the work
group size limitations (which were not reached in any of the test cases). But note that this still
requires more graphics memory.

Even if the sorting operation has to be done, it could certainly be optimized to use less
memory. This could be done by changing the sorting algorithm so that instead of returning the
values in the ascending order, it returns only the indexes to those values. Or it would be even
better if a segmented k-selection algorithm for the GPU could be made. Unfortunately, this
could not be done because of the limited knowledge of the researcher.

10

Ishbir Singh
001424-0121

References
Akl, Selim G. (1984). “An optimal algorithm for parallel selection”. In: Information Processing

Letters 19.1, pp. 47–50. ංඌඌඇ: 0020-0190. ൽඈං: 10.1016/0020-0190(84)90128-5. ඎඋඅ:
http://www.sciencedirect.com/science/article/pii/0020019084901285.

Alabi, Tolu et al. (Oct. 2012). “Fast k-selection algorithms for graphics processing units”. In:
J. Exp. Algorithmics 17, 4.2:4.1–4.2:4.29. ංඌඌඇ: 1084-6654. ൽඈං: 10 . 1145 / 2133803 .
2345676. ඎඋඅ: http://doi.acm.org/10.1145/2133803.2345676.

Andoni, Alexandr (2009). “Nearest Neighbor Search: the Old, the New, and the Impossible”.
PhD thesis. Massachusetts Institute of Technology.

Arya, Sunil et al. (Nov. 1998). “An optimal algorithm for approximate nearest neighbor search-
ing fixed dimensions”. In: J. ACM 45.6, pp. 891–923. ංඌඌඇ: 0004-5411. ൽඈං: 10.1145/
293347.293348. ඎඋඅ: http://doi.acm.org/10.1145/293347.293348.

Bader, David A. (2004). “An improved, randomized algorithm for parallel selection with an
experimental study”. In: Journal of Parallel and Distributed Computing 64.9, pp. 1051–
1059. ංඌඌඇ: 0743-7315. ൽඈං: 10 . 1016 / j . jpdc . 2004 . 06 . 010. ඎඋඅ: http : / / www .
sciencedirect.com/science/article/pii/S0743731504001169.

Baxter, Sean (2013). Modern GPU. NVIDIA Research. ඎඋඅ: http://nvlabs.github.io/
moderngpu/ (visited on 12/09/2013).

Binder, Steven R. et al. (2005). “Computer-Assisted Pattern Recognition of Autoantibody Re-
sults”. In: Clinical and Diagnostic Laboratory Immunology 12.12, pp. 1353–1357. ൽඈං: 10.
1128/CDLI.12.12.1353-1357.2005. eprint: http://cvi.asm.org/content/12/12/
1353.full.pdf+html. ඎඋඅ: http://cvi.asm.org/content/12/12/1353.abstract.

Cederman, Daniel and Philippas Tsigas (Jan. 2010). “GPU-Quicksort: A practical Quicksort
algorithm for graphics processors”. In: J. Exp. Algorithmics 14, 4:1.4–4:1.24. ංඌඌඇ: 1084-
6654. ൽඈං: 10 . 1145 / 1498698 . 1564500. ඎඋඅ: http : / / doi . acm . org / 10 . 1145 /
1498698.1564500.

CUDA C Programming Guide (2013). NVIDIA. ඎඋඅ: http://docs.nvidia.com/cuda/
pdf/CUDA_C_Programming_Guide.pdf (visited on 12/12/2013).

Garcia, V., E. Debreuve, andM. Barlaud (2008). “Fast k nearest neighbor search usingGPU”. In:
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer
Society Conference on, pp. 1–6. ൽඈං: 10.1109/CVPRW.2008.4563100.

Harris, Mark (2004). “GPGPU: General-purpose computation on GPUs”. In: Tutorial Course
5, EuroGraphics04.

Helluy, P (2011). “A portable implementation of the radix sort algorithm in OpenCL”.
Hoare, C. A. R. (July 1961). “Algorithm 64: Quicksort”. In: Commun. ACM 4.7, pp. 321–.

ංඌඌඇ: 0001-0782. ൽඈං: 10.1145/366622.366644. ඎඋඅ: http://doi.acm.org/10.1145/
366622.366644.

11

http://dx.doi.org/10.1016/0020-0190(84)90128-5
http://www.sciencedirect.com/science/article/pii/0020019084901285
http://dx.doi.org/10.1145/2133803.2345676
http://dx.doi.org/10.1145/2133803.2345676
http://doi.acm.org/10.1145/2133803.2345676
http://dx.doi.org/10.1145/293347.293348
http://dx.doi.org/10.1145/293347.293348
http://doi.acm.org/10.1145/293347.293348
http://dx.doi.org/10.1016/j.jpdc.2004.06.010
http://www.sciencedirect.com/science/article/pii/S0743731504001169
http://www.sciencedirect.com/science/article/pii/S0743731504001169
http://nvlabs.github.io/moderngpu/
http://nvlabs.github.io/moderngpu/
http://dx.doi.org/10.1128/CDLI.12.12.1353-1357.2005
http://dx.doi.org/10.1128/CDLI.12.12.1353-1357.2005
http://cvi.asm.org/content/12/12/1353.full.pdf+html
http://cvi.asm.org/content/12/12/1353.full.pdf+html
http://cvi.asm.org/content/12/12/1353.abstract
http://dx.doi.org/10.1145/1498698.1564500
http://doi.acm.org/10.1145/1498698.1564500
http://doi.acm.org/10.1145/1498698.1564500
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://dx.doi.org/10.1109/CVPRW.2008.4563100
http://dx.doi.org/10.1145/366622.366644
http://doi.acm.org/10.1145/366622.366644
http://doi.acm.org/10.1145/366622.366644

Ishbir Singh
001424-0121

Hoare, C. A. R. (1962). “Quicksort”. In: The Computer Journal 5.1, pp. 10–16. ൽඈං: 10.1093/
comjnl/5.1.10. eprint: http://comjnl.oxfordjournals.org/content/5/1/10.
full.pdf+html. ඎඋඅ: http://comjnl.oxfordjournals.org/content/5/1/10.
abstract.

Kuang, Quansheng and Lei Zhao (2009). “A practical GPU based kNN algorithm”. In: Interna-
tional Symposium on Computer Science and Computational Technology (ISCSCT), pp. 151–
155.

Merrill, Duane and Andrew Grimshaw (2011). “High performance and scalable radix sorting:
A case study of implementing dynamic parallelism for GPU computing”. In: Parallel Pro-
cessing Letters 21.02, pp. 245–272. ൽඈං: 10.1142/S0129626411000187. eprint: http:
//www.worldscientific.com/doi/pdf/10.1142/S0129626411000187. ඎඋඅ: http:
//www.worldscientific.com/doi/abs/10.1142/S0129626411000187.

Monroe, Laura, Joanne Wendelberger, and Sarah Michalak (2011). “Randomized selection on
theGPU”. In:Proceedings of the ACMSIGGRAPHSymposium onHigh PerformanceGraph-
ics. HPG ’11. Vancouver, British Columbia, Canada: ACM, pp. 89–98. ංඌൻඇ: 978-1-4503-
0896-0. ൽඈං: 10.1145/2018323.2018338. ඎඋඅ: http://doi.acm.org/10.1145/
2018323.2018338.

Nene, S.A. and S.K. Nayar (1997). “A simple algorithm for nearest neighbor search in high
dimensions”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on 19.9,
pp. 989–1003. ංඌඌඇ: 0162-8828. ൽඈං: 10.1109/34.615448.

Peterson, L. E. (2009). “K-nearest neighbor”. In: Scholarpedia 4.2, p. 1883.
Saini, Indu, Dilbag Singh, and Arun Khosla (2013). “QRS detection using K-Nearest Neighbor

algorithm (KNN) and evaluation on standard ECG databases”. In: Journal of Advanced
Research 4.4, pp. 331–344. ංඌඌඇ: 2090-1232. ൽඈං: 10.1016/j.jare.2012.05.007. ඎඋඅ:
http://www.sciencedirect.com/science/article/pii/S209012321200046X.

Satish, Nadathur, Mark Harris, and Michael Garland (2009). “Designing efficient sorting algo-
rithms for manycore GPUs”. In: Proceedings of the 2009 IEEE International Symposium
on Parallel&Distributed Processing. IPDPS ’09. Washington, DC, USA: IEEE Computer
Society, pp. 1–10. ංඌൻඇ: 978-1-4244-3751-1. ൽඈං: 10.1109/IPDPS.2009.5161005. ඎඋඅ:
http://dx.doi.org/10.1109/IPDPS.2009.5161005.

Sintorn, Erik and Ulf Assarsson (2008). “Fast parallel GPU-sorting using a hybrid algorithm”.
In: Journal of Parallel and Distributed Computing 68.10, pp. 1381–1388. ංඌඌඇ: 0743-7315.
ൽඈං: 10 . 1016 / j . jpdc . 2008 . 05 . 012. ඎඋඅ: http : / / www . sciencedirect . com /
science/article/pii/S0743731508001196.

12

http://dx.doi.org/10.1093/comjnl/5.1.10
http://dx.doi.org/10.1093/comjnl/5.1.10
http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf+html
http://comjnl.oxfordjournals.org/content/5/1/10.full.pdf+html
http://comjnl.oxfordjournals.org/content/5/1/10.abstract
http://comjnl.oxfordjournals.org/content/5/1/10.abstract
http://dx.doi.org/10.1142/S0129626411000187
http://www.worldscientific.com/doi/pdf/10.1142/S0129626411000187
http://www.worldscientific.com/doi/pdf/10.1142/S0129626411000187
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000187
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000187
http://dx.doi.org/10.1145/2018323.2018338
http://doi.acm.org/10.1145/2018323.2018338
http://doi.acm.org/10.1145/2018323.2018338
http://dx.doi.org/10.1109/34.615448
http://dx.doi.org/10.1016/j.jare.2012.05.007
http://www.sciencedirect.com/science/article/pii/S209012321200046X
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1016/j.jpdc.2008.05.012
http://www.sciencedirect.com/science/article/pii/S0743731508001196
http://www.sciencedirect.com/science/article/pii/S0743731508001196

Ishbir Singh
001424-0121

A Raw Time Measurements
The code (in Appendix B.3) was compiled in Visual Studio 2012 on the Release x64 envi-
ronment. All debugging code output was disabled and compiler optimizations were done for
ensuring maximum speed. The tests were repeated 5 times and the average was taken. The
average total time of CPU was divided by the average total time of GPU to get the speedup in
number of times.

A.1 Test System 1
Specifications: Windows 8 64-bit, 6GB DDR3 RAM, Intel Core i7 2670QM CPU at 2.20GHz
and NVIDIA GT 520MX GPU (1GB DDR3 memory)

A.1.1 Case 1

Test Count = 1024

Train Count = 512

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.00626672 0.00827923 0.014546 0.094052 0.028017 0.122069
2 0.00625661 0.00827194 0.0145285 0.094048 0.028017 0.122065
3 0.00627974 0.00829027 0.01457 0.090037 0.029017 0.119054
4 0.00625533 0.00815242 0.0144077 0.090055 0.027016 0.117071
5 0.00625786 0.00833962 0.0145975 0.090055 0.026016 0.116071

Average 0.00626325 0.00826670 0.014530 0.091649 0.027617 0.119266

Speedup=
Total CPU Time
Total GPU Time

= 8.21x

13

Ishbir Singh
001424-0121

A.1.2 Case 2

Test Count = 2048

Train Count = 1024

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.0251949 0.0310295 0.0562244 0.372232 0.115071 0.487303
2 0.0251612 0.0310594 0.0562206 0.368228 0.119074 0.487302
3 0.0251622 0.0309711 0.0561333 0.378235 0.119072 0.497307
4 0.025184 0.0310445 0.0562284 0.379234 0.119073 0.498307
5 0.0251689 0.0310748 0.0562436 0.375232 0.11407 0.489302

Average 0.0251742 0.0310359 0.0562101 0.374632 0.117272 0.491904

Speedup=
Total CPU Time
Total GPU Time

= 8.75x

A.1.3 Case 3

Test Count = 4096

Train Count = 1024

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.0502904 0.0604823 0.110773 0.78147 0.24315 1.02462
2 0.0502541 0.0601704 0.110425 0.751466 0.238146 0.989612
3 0.0502917 0.0604044 0.110696 0.738463 0.231137 0.9696
4 0.0502729 0.0604098 0.110683 0.771475 0.242149 1.01362
5 0.0502715 0.0603323 0.110604 0.746464 0.232143 0.978607

Average 0.0502761 0.0603598 0.110636 0.75787 0.23735 0.99521

Speedup=
Total CPU Time
Total GPU Time

= 9.00x

14

Ishbir Singh
001424-0121

A.1.4 Case 4

Test Count = 4096

Train Count = 2048

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.101081 0.129163 0.230244 1.52294 0.522324 2.04527
2 0.101136 0.12958 0.230716 1.76308 0.523323 2.28641
3 0.101089 0.129287 0.230376 1.62 0.527326 2.14733
4 0.101202 0.12955 0.230752 1.56797 0.529328 2.0973
5 0.101121 0.129454 0.230575 1.66603 0.709439 2.37547

Average 0.101126 0.129407 0.230533 1.62800 0.562348 2.19036

Speedup=
Total CPU Time
Total GPU Time

= 9.50x

A.1.5 Case 5

Test Count = 4096

Train Count = 1024

Dimensions = 128

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.102825 0.0607072 0.163532 2.27942 0.312194 2.59161
2 0.107014 0.0608962 0.16791 2.19737 0.278171 2.47554
3 0.111446 0.060802 0.172248 1.70406 0.239147 1.94321
4 0.111488 0.0606537 0.172142 2.18435 0.309191 2.49355
5 0.111927 0.0606709 0.172598 2.20437 0.308192 2.51256

Average 0.108940 0.0607460 0.169686 2.11391 0.289379 2.40329

Speedup=
Total CPU Time
Total GPU Time

= 14.16x

15

Ishbir Singh
001424-0121

A.1.6 Case 6

Test Count = 4096

Train Count = 1024

Dimensions = 256

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.212993 0.0610609 0.274054 4.5188 0.317196 4.836
2 0.212703 0.0606853 0.273388 4.36671 0.308191 4.6749
3 0.213086 0.0605786 0.273664 4.32268 0.309192 4.63187
4 0.212915 0.0605678 0.273482 3.8734 0.245153 4.11856
5 0.212874 0.0606156 0.27349 4.23363 0.308191 4.54182

Average 0.212914 0.0607016 0.273616 4.2630 0.297585 4.561

Speedup=
Total CPU Time
Total GPU Time

= 16.67x

A.1.7 Case 7

Test Count = 8192

Train Count = 2048

Dimensions = 256

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.823771 0.259007 1.08278 18.9157 1.04465 19.9604
2 0.82391 0.260843 1.08475 18.3557 1.36689 19.7226
3 0.812734 0.259508 1.07224 17.3313 1.36689 18.6982
4 0.823145 0.257485 1.08063 19.8189 1.08471 20.9036
5 0.823148 0.258584 1.08173 20.1802 1.03568 21.2158

Average 0.821342 0.259085 1.08043 18.9204 1.17976 20.1001

Speedup=
Total CPU Time
Total GPU Time

= 18.60x

16

Ishbir Singh
001424-0121

A.1.8 Case 8

Test Count = 8192

Train Count = 4096

Dimensions = 256

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 1.67809 0.57073 2.24882 96.9833 3.01096 99.9943
2 1.67641 0.567334 2.24375 94.6523 2.97396 97.6263
3 1.67695 0.570159 2.24711 99.3715 3.01199 102.383
4 1.67822 0.565061 2.24328 92.8634 3.012 95.8754
5 1.68864 0.565648 2.25429 93.2767 3.01206 96.2887

Average 1.67966 0.56779 2.24745 95.4294 3.00419 98.4335

Speedup=
Total CPU Time
Total GPU Time

= 43.80x

A.1.9 Case 9

Test Count = 16384

Train Count = 3072

Dimensions = 512

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 8.31662 0.814474 9.13109 116.994 4.35898 121.353
2 8.31672 0.83142 9.14814 135.515 5.36961 140.885
3 8.31632 0.829826 9.14614 141.605 5.2645 146.869
4 8.31666 0.817691 9.13435 132.293 4.34389 136.637
5 8.31628 0.811922 9.1282 115.323 4.36291 119.686

Average 8.31652 0.821067 9.13758 128.346 4.73998 133.086

Speedup=
Total CPU Time
Total GPU Time

= 14.56x

17

Ishbir Singh
001424-0121

A.2 Test System 2
Specifications: Windows 7 64-bit, 8GB DDR3 RAM, Intel Core i7 3720QM CPU at 2.6GHz
and NVIDIA GT 650M GPU (1GB GDDR5 memory)

A.2.1 Case 1

Test Count = 1024

Train Count = 512

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.00273517 0.00457142 0.00730659 0.078 0.0156 0.0936
2 0.00274637 0.00368224 0.00642861 0.0624 0.0156 0.078
3 0.00274426 0.00341846 0.00616272 0.078 0.0156 0.0936
4 0.00274323 0.00353757 0.0062808 0.078 0.0312 0.1092
5 0.00273843 0.00358922 0.00632765 0.078 0.0156 0.0936

Average 0.00274149 0.00375978 0.00650127 0.075 0.0187 0.0936

Speedup=
Total CPU Time
Total GPU Time

= 14.40x

A.2.2 Case 2

Test Count = 2048

Train Count = 1024

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.0107162 0.0115028 0.022219 0.312 0.0936 0.4056
2 0.0107217 0.0124233 0.0231451 0.312 0.0936 0.4056
3 0.0107263 0.012358 0.0230843 0.3276 0.0936 0.4212
4 0.0107382 0.0114077 0.022146 0.2964 0.0936 0.39
5 0.0107178 0.0124285 0.0231463 0.2964 0.0936 0.39

Average 0.0107240 0.0120241 0.022748 0.309 0.0936 0.4025

18

Ishbir Singh
001424-0121

Speedup=
Total CPU Time
Total GPU Time

= 17.69x

A.2.3 Case 3

Test Count = 4096

Train Count = 1024

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.0213395 0.0220546 0.0433941 0.608401 0.1872 0.795601
2 0.0216219 0.0221313 0.0437532 0.608401 0.2028 0.811201
3 0.0213215 0.0217304 0.0430519 0.639601 0.1872 0.826801
4 0.0213533 0.0217957 0.0431491 0.608401 0.1872 0.795601
5 0.0213565 0.0220736 0.0434301 0.624001 0.1872 0.811201

Average 0.0213985 0.0219571 0.0433557 0.617761 0.1903 0.808081

Speedup=
Total CPU Time
Total GPU Time

= 18.64x

A.2.4 Case 4

Test Count = 4096

Train Count = 2048

Dimensions = 64

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.0428435 0.0476087 0.0904522 1.1856 0.4368 1.6224
2 0.0428354 0.0480581 0.0908935 1.1856 0.4212 1.6068
3 0.0425371 0.046056 0.0885931 1.2012 0.4212 1.6224
4 0.0425585 0.0473332 0.0898918 1.1856 0.4212 1.6068
5 0.0425606 0.0469811 0.0895417 1.2012 0.4212 1.6224

Average 0.0426670 0.0472074 0.0898745 1.1918 0.4243 1.6162

Speedup=
Total CPU Time
Total GPU Time

= 17.98x

19

Ishbir Singh
001424-0121

A.2.5 Case 5

Test Count = 4096

Train Count = 1024

Dimensions = 128

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.04279 0.022589 0.0653789 1.3416 0.1872 1.5288
2 0.0427892 0.0216988 0.0644879 1.404 0.1872 1.5912
3 0.0430812 0.022398 0.0654792 1.3416 0.1872 1.5288
4 0.0427858 0.0225653 0.0653511 1.3884 0.1872 1.5756
5 0.0430575 0.0223927 0.0654502 1.3728 0.1872 1.56

Average 0.04290 0.022329 0.0652295 1.3697 0.1872 1.5569

Speedup=
Total CPU Time
Total GPU Time

= 23.87x

A.2.6 Case 6

Test Count = 4096

Train Count = 1024

Dimensions = 256

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.0855503 0.0226527 0.108203 2.6364 0.1872 2.8236
2 0.0855485 0.0225285 0.108077 2.7768 0.2028 2.9796
3 0.0762698 0.0196984 0.0959682 2.652 0.1872 2.8392
4 0.0762714 0.0202253 0.0964968 2.6364 0.1872 2.8236
5 0.0762684 0.0198918 0.0961602 2.7612 0.1872 2.9484

Average 0.0799817 0.0209993 0.100981 2.6926 0.1903 2.8829

Speedup=
Total CPU Time
Total GPU Time

= 28.55x

20

Ishbir Singh
001424-0121

A.2.7 Case 7

Test Count = 8192

Train Count = 2048

Dimensions = 256

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.304428 0.0828186 0.387246 10.7172 0.842401 11.5596
2 0.323697 0.0817387 0.405435 10.7796 0.842401 11.622
3 0.303893 0.0817805 0.385673 10.7328 0.842401 11.5752
4 0.322288 0.0827449 0.405033 10.6392 0.842401 11.4816
5 0.303631 0.0827345 0.386366 10.6236 0.826801 11.4504

Average 0.311587 0.0823634 0.393951 10.6985 0.839281 11.5378

Speedup=
Total CPU Time
Total GPU Time

= 29.29x

A.2.8 Case 8

Test Count = 8192

Train Count = 4096

Dimensions = 256

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 0.631164 0.178724 0.809887 61.1521 1.8564 63.0085
2 0.632803 0.17719 0.809993 56.4721 1.8564 58.3285
3 0.632591 0.177067 0.809658 59.4361 1.8408 61.2769
4 0.623135 0.178502 0.801637 57.5017 1.8564 59.3581
5 0.635041 0.176679 0.811719 57.2833 1.8564 59.1397

Average 0.630947 0.177632 0.808579 58.3691 1.8533 60.2223

Speedup=
Total CPU Time
Total GPU Time

= 74.48x

21

Ishbir Singh
001424-0121

A.2.9 Case 9

Test Count = 16384

Train Count = 3072

Dimensions = 512

GPU CPU
Trial no. Distance Sorting Total Time Distance Sorting Total Time

1 1.85124 0.259527 2.11077 86.1278 2.6832 88.811
2 1.84638 0.256011 2.10239 83.3665 2.6832 86.0498
3 1.85291 0.256721 2.10963 80.9641 2.6832 83.6473
4 1.86197 0.256333 2.1183 82.8829 2.6832 85.5661
5 1.85899 0.255952 2.11495 84.9421 2.6832 87.6254

Average 1.85430 0.256909 2.11121 83.6567 2.6832 86.340

Speedup=
Total CPU Time
Total GPU Time

= 40.90x

22

Ishbir Singh
001424-0121

B Reproduced Code

B.1 dataGenerator.py
This is a helper file intended for generating random data in the required format and putting it
into files.

1 import random
2
3 def generate_data(test_points, train_points, train_cats, dimensions,

testfile, trainfile):
4 f = open(trainfile, "w")
5 for a in range(train_cats):
6 for b in range(train_points):
7 line = []
8 for c in range(dimensions):
9 line.append("%.3f" % random.random())
10 f.write(",".join(line) + "\n")
11 if a != train_cats − 1: # last point in a category, leave a

line
12 f.write("\n")
13 f.seek(f.tell()−2) # used to eliminate the last \n
14 f.truncate()
15 f.close()
16
17 f = open(testfile, "w")
18 for a in range(test_points):
19 line = []
20 for c in range(dimensions):
21 line.append("%.3f" % random.random())
22 f.write(",".join(line) + "\n")
23
24 f.seek(f.tell()−2) # used to elimininate the last \n
25 f.truncate()
26 f.close()
27
28 testCases = [
29 [1024, 128, 4, 64, "case1test.txt", "case1train.txt"],
30 [2048, 256, 4, 64, "case2test.txt", "case2train.txt"],
31 [4096, 256, 4, 64, "case3test.txt", "case3train.txt"],
32 [4096, 512, 4, 64, "case4test.txt", "case4train.txt"],
33 [4096, 256, 4, 128, "case5test.txt", "case5train.txt"],
34 [4096, 256, 4, 256, "case6test.txt", "case6train.txt"],
35 [8192, 512, 4, 256, "case7test.txt", "case7train.txt"],
36 [8192, 1024, 4, 256, "case8test.txt", "case8train.txt"],
37 [16384, 768, 4, 512, "case9test.txt", "case9train.txt"]
38]
39
40 for case in testCases:
41 generate_data(*case)
42
43 print("Done")

23

Ishbir Singh
001424-0121

B.2 Definitions.cuh
This file contains a small function helpful in reading and converting data from text files.

1 //
2 // Definitions.cuh
3 //
4 // Created by Ishbir Singh on 24/07/12.
5 // Copyright (c) 2012−2014 webmaster@ishbir.com. All rights reserved.
6 //
7
8 #ifndef _Definitions_h
9 #define _Definitions_h
10
11 #include <sstream>
12 struct bad_conversion { };
13 /*
14 * Convert from string to any type via streaming operations.
15 */
16 template <class T>
17 void from_string(T& t,
18 const std::string& s,
19 std::ios_base& (*f)(std::ios_base&))
20 {
21 std::istringstream iss(s);
22 if((iss >> f >> t).fail())
23 throw bad_conversion();
24 }
25 #endif

B.3 CUDA-KNN.cu
This is the main file constituting the program. It contains the data reading and processing code
as well as all the algorithms and timers.

1 //
2 // CUDA−KNN.cu
3 //
4 // Created by Ishbir Singh on 22/06/12.
5 // Copyright (c) 2012−2014 webmaster@ishbir.com. All rights reserved.
6 //
7
8 #include <iostream>
9 #include <sstream>
10 #include <fstream>
11 #include <string>
12 #include <iterator>
13 #include <algorithm>
14 #include <vector>
15 #include <thrust/host_vector.h>
16 #include <thrust/device_vector.h>
17 #include <thrust/copy.h>
18 #include <chrono>
19
20 #include "Definitions.cuh"

24

Ishbir Singh
001424-0121

21 #include "kernels/segmentedsort.cuh"
22
23 using namespace mgpu;
24 using namespace std;
25
26 __global__ void populate_keys_with_training_ids(int* keys) {
27 /**
28 * Populates a keys array with numbers from 0 to train_count
29 */
30 int global_id_0 = blockIdx.x * blockDim.x + threadIdx.x; // ID of

test point
31 int global_id_1 = blockIdx.y * blockDim.y + threadIdx.y; // ID of

training point
32 int global_size_0 = gridDim.x * blockDim.x; // Number of test

points
33 int global_size_1 = gridDim.y * blockDim.y; // Number of training

points
34
35 int id = global_id_0*global_size_1 + global_id_1;
36 keys[id] = global_id_1;
37 }
38
39 __global__ void populate_segments(int* segments, int train_count) {
40 /**
41 * Populates a segments array with indices of where each new test

point begins (segments in sorting)
42 */
43 int global_id_0 = blockIdx.x * blockDim.x + threadIdx.x; // ID of

test point
44 segments[global_id_0] = global_id_0*train_count;
45 }
46
47 __global__ void distances_computation(float* test_g, float* train_g, float

*output, int dims) { // dims is dimensions of data
48 /**
49 * test_g: Array of test points in global memory
50 * train_g: Array of training points in global memory
51 * output: Array of output distance calculations in global memory
52 * dims: Number of dimensions in the incoming data
53 */
54
55 float res = 0; // Stores the final result
56 int global_id_0 = blockIdx.x * blockDim.x + threadIdx.x; // ID of

test point
57 int global_id_1 = blockIdx.y * blockDim.y + threadIdx.y; // ID of

training point
58 int global_size_0 = gridDim.x * blockDim.x; // Number of test

points
59 int global_size_1 = gridDim.y * blockDim.y; // Number of training

points
60
61 extern __shared__ float test[];
62 if (threadIdx.y < dims) { // first 'dims' threads copy each

dimension float to local memory
63 test[threadIdx.y] = test_g[dims*global_id_0 + threadIdx.y];
64 }
65 __syncthreads(); // wait for copy operation
66

25

Ishbir Singh
001424-0121

67 for (int i=0; i < dims; i++) { // loop over!
68 res += pow((train_g[global_size_1*i+global_id_1] − test[i])

, 2); // find the right train point to use
69 }
70
71 int id = global_id_0*global_size_1 + global_id_1; // ID of test

point*Number of training points + Training point ID
72
73 // Thus, the corresponding distances between one test point and all

training points are stored in a contiguous location
74 // This approach is very useful for segmented sorting.
75
76 output[id] = res;
77 }
78
79 ///
80 /// This is the entry point of the application
81 /// Accepted filetypes: CSV
82 ///
83 int main(int argc, char* argv[]) {
84 if (argc != 4) // File name is not present or malformed arguments,
85 {
86 cerr << "Invalid arguments. Arguments are: test_data_file

training_data_file num_types_train" << endl;
87 return 1;
88 }
89
90 /**
91 Read the test data from specified file
92
93 Test Data Format:
94 −−−−−−−−−−−−−−−−−
95
96 x1,x2,x3,x4
97 x1,x2,x3,x4
98 x1,x2,x3,x4
99 x1,x2,x3,x4
100 y1,y2,y3,y4
101 y1,y2,y3,y4
102 y1,y2,y3,y4
103 z1,z2,z3,z4
104 z1,z2,z3,z4
105 **/
106 int test_count, col_count;
107
108 ifstream infile(argv[1]); // Open file
109 test_count = count(istreambuf_iterator<char>(infile),

istreambuf_iterator<char>(), '\n')+1; // count number of points
110 infile.seekg(0); // seek back
111
112 string line; // temp var for one line
113 getline(infile, line); // read one line
114
115 stringstream firstStream(line, stringstream::in | stringstream::out

); // make a stream
116 col_count = count(istreambuf_iterator<char>(firstStream),

istreambuf_iterator<char>(), ',')+1; // count number of
dimensions [2 commas mean 3 dims]

26

Ishbir Singh
001424-0121

117
118 float* test_points = new float[test_count*col_count];
119
120 for(unsigned int i=0; i < test_count/* && !infile.eof() && infile.

good()*/; i++) { // Keep reading and storing
121 stringstream lineStream(line, stringstream::in |

stringstream::out); // make a stream
122
123 string cell;
124 float val;
125
126 for(unsigned int j=0; j < col_count; j++) { // we don't

want to store the last thing which gives class
127 getline(lineStream, cell, ',');
128 if (cell == "") // empty
129 continue;
130 from_string<float>(val, cell, std::dec);
131 test_points[i*col_count+j] = val; // Convert to

float and store
132 }
133 getline(infile, line); // read one line
134 }
135
136 // Cleanup
137 infile.close(); // We are done
138
139 /** Done with reading test data; Start reading training data **/
140 /**
141 Train Data Format:
142 −−−−−−−−−−−−−−−−−
143
144 x1,x2,x3,x4
145 x1,x2,x3,x4
146 x1,x2,x3,x4
147 x1,x2,x3,x4
148
149 y1,y2,y3,y4
150 y1,y2,y3,y4
151 y1,y2,y3,y4
152
153 z1,z2,z3,z4
154 z1,z2,z3,z4
155
156 This tells us that the test data has 3 classifications.
157
158 Train Data Array Format:
159 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160
161 [x1,x2,x3,x4, ... y1,y2,y3,y4, ... z1,z2,z3,z4]
162
163 Train Data Classification Vector Format: [k is index]
164 −−−
165
166 (index: [classifcation_start_index, classification_end_index])
167
168 k0: [0, 19],
169 k1: [20, 39],
170 k2: [40, 59]

27

Ishbir Singh
001424-0121

171
172 k0, k1 and k2 give the various classes of the test data to compare

to.
173
174 Both these arrays have been kept separate to reduce complexity of

code and to maintain a 2 x 2 matrix in both test and train set
as specified in paper.

175 **/
176
177 ifstream trainfile(argv[2]);
178
179 int train_count, train_line_count;
180
181 // Count the lines and the types
182 train_line_count = count(istreambuf_iterator<char>(trainfile),

istreambuf_iterator<char>(), '\n')+1; // count last line also
183 trainfile.seekg(0);
184 trainfile.clear(); // clear EOF bit
185
186 int num_types; // num of types of training points
187 from_string<int>(num_types, (string)argv[3], std::dec);
188
189 train_count = train_line_count−num_types+1; // +1 is because of the

fact that if there are 2 types, there will be only 1 "\n\n"
190
191 float* train_points = new float[train_count*col_count];
192
193 vector<vector<int>> train_points_classes(num_types, vector<int>(2,

0)); // Init vector for keeping track of classes
194
195 unsigned int type_count = 0; // Keep track of the type id
196
197 train_points_classes[0][0] = 0; // Starting point is 0
198
199 for (int i=0; i < train_count /*&& !trainfile.eof() && trainfile.

good()*/; i++) { // Keep reading and storing
200 string line;
201 getline(trainfile, line);
202
203 if (line == "" && type_count < num_types) { //

classification boundary
204 train_points_classes[type_count][1] = i−1;
205
206 if (type_count == num_types−1) // last type so set

its ending beforehand
207 train_points_classes[type_count][1] =

train_count*col_count − 1; // common
sense

208 else
209 train_points_classes[type_count][0] = i; //

set beginning of next type
210 type_count += 1; // increment
211 i−−; // compensation necessary
212 }
213 else {
214 stringstream lineStream(line, stringstream::in |

stringstream::out); // make a stream
215

28

Ishbir Singh
001424-0121

216 string cell;
217 float val;
218
219 for(int j=0; j < col_count; j++) {
220 getline(lineStream, cell, ',');
221 if (cell == "") // empty
222 continue;
223 from_string<float>(val, cell, std::dec);
224 train_points[j*train_count + i] = val; //

Convert to float and store
225 }
226 }
227 }
228 trainfile.close();
229
230 /** Done reading all the data **/
231 cout << "Test Count: " << test_count<< "\n";
232 cout << "Train Count: " << train_count << "\n";
233 cout << "Dimensions: " << col_count << "\n\n";
234
235 // Main stuff comes here
236 ContextPtr context = CreateCudaDevice(0);
237
238 int work_items_per_group = col_count > 256 ? 512 : 256; // Max

dimensions 512 for our experiments, but more efficiency at 256
239 int k = 5; // get k smallest element
240
241 // allocate memory and copy data
242 MGPU_MEM(float) devPtrTest = context−>Malloc<float>(test_points,

test_count*col_count);
243 MGPU_MEM(float) devPtrTrain = context−>Malloc<float>(train_points,

train_count*col_count);
244 MGPU_MEM(float) devPtrOutput = context−>Malloc<float>(train_count*

test_count);
245
246 // create two dimensional blocks
247 dim3 block_size;
248 block_size.x = 1;
249 block_size.y = work_items_per_group;
250
251 // configure a two dimensional grid as well
252 dim3 grid_size;
253 grid_size.x = test_count / block_size.x;
254 grid_size.y = train_count / block_size.y;
255
256 int temp_mem = sizeof(float) * col_count; // allocate enough for

one training point
257
258 double GPUDistanceTime = 0;
259
260 context−>Start();
261 distances_computation <<< grid_size, block_size, temp_mem >>>(

devPtrTest−>get(),
262 devPtrTrain−>get(),
263 devPtrOutput−>get(),
264 col_count
265);
266 GPUDistanceTime = context−>Split();

29

Ishbir Singh
001424-0121

267
268 MGPU_SYNC_CHECK("distances_computation");
269
270 cout << "GPU Distance Computation Time: " << GPUDistanceTime << "\n

";
271
272 // don't need these 2 anymore
273 devPtrTest.release();
274 devPtrTrain.release();
275 // Keep the test and train points so that CPU processing can also

happen
276
277 // STAGE 2 BEGIN
278 double GPUSortTime = 0;
279
280 // Allocate memory for sorting stage
281 MGPU_MEM(int) keys = context−>Malloc<int>(train_count*test_count);
282 MGPU_MEM(int) segments = context−>Malloc<int>(test_count);
283
284 // fill in keys here
285 context−>Start();
286 populate_keys_with_training_ids<<< grid_size, block_size >>>(keys−>

get());
287 GPUSortTime = context−>Split();
288
289 MGPU_SYNC_CHECK("populate_keys_with_training_ids");
290
291 // fill in segments here
292
293 // create two dimensional blocks
294 block_size.x = work_items_per_group;
295 block_size.y = 1;
296
297 // configure a two dimensional grid as well
298 grid_size.x = test_count / block_size.x;
299 grid_size.y = 1;
300
301 context−>Start();
302 populate_segments<<< block_size, grid_size >>>(segments−>get(),

train_count);
303 GPUSortTime += context−>Split();
304
305 context−>Start();
306 SegSortPairsFromIndices<float, int>(devPtrOutput−>get(), keys−>get

(), train_count*test_count,
307 segments−>get(), test_count, *context);
308 GPUSortTime += context−>Split();
309
310 cout << "GPU Sorting Time: " << GPUSortTime << "\n";
311
312 cout << "GPU Time Taken: " << GPUSortTime+GPUDistanceTime << "\n\n"

;
313
314 int *kSmallestIndicesGPU = new int[test_count*k];
315
316 int offset = 0;
317
318 for(int i=0; i < test_count; i++) {

30

Ishbir Singh
001424-0121

319 keys−>ToHost(offset, sizeof(int)*k, &kSmallestIndicesGPU[k*
i]);

320 offset += sizeof(int)*train_count; // increment to next
test point

321 }
322
323 // Release data on GPU
324 keys.release();
325 segments.release();
326 devPtrOutput.release();
327 // don't need these 2 anymore
328 devPtrTest.release();
329 devPtrTrain.release();
330 // Stage 3 NOT IMPLEMENTED
331
332 // CPU Processing BEGIN
333
334 // Allocate memory for outputpu
335 vector<pair<float, int>> CPUOutput(test_count*train_count); //

create vector so that it can be easily sorted later
336
337 double CPUDistanceTime = 0;
338
339 auto start_time = chrono::steady_clock::now();
340
341 // Stage 1
342 for (int i=0; i < test_count; i++) {
343 for (int j=0; j < train_count; j++) {
344 float res = 0;
345 for (int p=0; p < col_count; p++) {
346 res += pow(test_points[i*col_count+p]−

train_points[p*train_count+j], 2);
347 }
348
349 CPUOutput[i*train_count+j] = pair<float, int>(res,

j);
350 }
351 }
352
353 CPUDistanceTime = chrono::duration_cast<chrono::microseconds>(

chrono::steady_clock::now() − start_time).count() / 1000000.0;
354 cout << "CPU Distance Computation Time: " << CPUDistanceTime << "\n

";
355
356 // Stage 2
357 // Sort each list
358 double CPUSortTime = 0;
359 start_time = chrono::steady_clock::now();
360
361 for (int i=0; i < test_count; i++) {
362 sort(CPUOutput.begin() + i*train_count, CPUOutput.begin() +

(i+1)*train_count);
363 }
364 CPUSortTime = chrono::duration_cast<chrono::microseconds>(chrono::

steady_clock::now() − start_time).count() / 1000000.0;
365 cout << "CPU Sorting Time: " << CPUSortTime << "\n";
366 cout << "CPU Time Taken: " << CPUDistanceTime+CPUSortTime << "\n";
367

31

Ishbir Singh
001424-0121

368 // Create a separate small array for the smallest indices
369 int* kSmallestIndicesCPU = new int[k*test_count];
370 offset = 0;
371
372 start_time = chrono::steady_clock::now();
373
374 for(int i=0; i < test_count; i++) {
375 for (int j=0; j < k; j++) {
376 kSmallestIndicesCPU[k*i+j] = CPUOutput[i*

train_count+j].second;
377 }
378 }
379
380 // Stage 3 NOT IMPLEMENTED
381
382 // Clear up
383 free(test_points);
384 free(train_points);
385
386 int rtrn = 0;
387
388 // Selection successful, now check answers against GPU
389 for (int i=0; i < test_count*k; i++) {
390 if (kSmallestIndicesCPU[i] != kSmallestIndicesGPU[i]) {
391 cerr << "ERROR, mismatch at: " << i << "\n";
392 rtrn = 1;
393 }
394 }
395
396 return rtrn; // exit code
397 }

32

	Introduction
	Background
	Previous Work
	Distance Computation
	Sorting
	Selection
	Classification

	Proposed Algorithm
	Distance Calculation
	Selection/Sorting Algorithm
	Classification

	Performance and Evaluation
	Conclusion
	References
	Raw Time Measurements
	Test System 1
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Case 8
	Case 9

	Test System 2
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Case 8
	Case 9

	Reproduced Code
	dataGenerator.py
	Definitions.cuh
	CUDA-KNN.cu

